Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 29(7): 1372-1385, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32133714

RESUMO

Bacteria living on the cuticle of ants are generally studied for their protective role against pathogens, especially in the clade of fungus-growing ants. However, little is known regarding the diversity of cuticular bacteria in other ant host species, as well as the mechanisms leading to the composition of these communities. Here, we used 16S rRNA gene amplicon sequencing to study the influence of host species, species interactions and the pool of bacteria from the environment on the assembly of cuticular bacterial communities on two phylogenetically distant Amazonian ant species that frequently nest together inside the roots system of epiphytic plants, Camponotus femoratus and Crematogaster levior. Our results show that (a) the vast majority of the bacterial community on the cuticle is shared with the nest, suggesting that most bacteria on the cuticle are acquired through environmental acquisition, (b) 5.2% and 2.0% of operational taxonomic units (OTUs) are respectively specific to Ca. femoratus and Cr. levior, probably representing their respective core cuticular bacterial community, and (c) 3.6% of OTUs are shared between the two ant species. Additionally, mass spectrometry metabolomics analysis of metabolites on the cuticle of ants, which excludes the detection of cuticular hydrocarbons produced by the host, were conducted to evaluate correlations among bacterial OTUs and m/z ion mass. Although some positive and negative correlations are found, the cuticular chemical composition was weakly species-specific, suggesting that cuticular bacterial communities are prominently environmentally acquired. Overall, our results suggest the environment is the dominant source of bacteria found on the cuticle of ants.


Assuntos
Formigas/microbiologia , Bactérias/classificação , Exoesqueleto/química , Exoesqueleto/microbiologia , Animais , Formigas/classificação , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , Meio Ambiente , Especificidade de Hospedeiro , Metaboloma , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Árvores
3.
Mol Ecol Resour ; 17(6): e34-e45, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28477337

RESUMO

High-throughput sequencing of the 16S rRNA gene has considerably helped revealing the essential role of bacteria living on insect cuticles in the ecophysiology and behaviour of their hosts. However, our understanding of host-cuticular microbiota feedbacks remains hampered by the difficulties of working with low bacterial DNA quantities as with individual insect cuticle samples, which are more prone to molecular biases and contaminations. Herein, we conducted a methodological benchmark on the cuticular bacterial loads retrieved from two Neotropical ant species of different body size and ecology: Atta cephalotes (~15 mm) and Pseudomyrmex penetrator (~5 mm). We evaluated the richness and composition of the cuticular microbiota, as well as the amount of biases and contamination produced by four DNA extraction protocols. We also addressed how bacterial community characteristics would be affected by the number of individuals or individual body size used for DNA extraction. Most extraction methods yielded similar results in terms of bacterial diversity and composition for A. cephalotes (~15 mm). In contrast, greater amounts of artefactual sequences and contaminations, as well as noticeable differences in bacterial community characteristics were observed between extraction methods for P. penetrator (~5 mm). We also found that large (~15 mm) and small (~5 mm) A. cephalotes individuals harbour different bacterial communities. Our benchmark suggests that cuticular microbiota of single individual insects can be reliably retrieved provided that blank controls, appropriate data cleaning, and individual body size and functional role within insect society are considered in the experiment.


Assuntos
Formigas/microbiologia , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/isolamento & purificação , Metagenômica/métodos , Microbiota , Animais
4.
Malar J ; 14: 234, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040313

RESUMO

BACKGROUND: A major requirement for malaria elimination is the development of transmission-blocking interventions. In vitro transmission-blocking bioassays currently mostly rely on the use of very few Plasmodium falciparum reference laboratory strains isolated decades ago. To fill a piece of the gap between laboratory experimental models and natural systems, the purpose of this work was to determine if culture-adapted field isolates of P. falciparum are suitable for in vitro transmission-blocking bioassays targeting functional maturity of male gametocytes: exflagellation. METHODS: Plasmodium falciparum isolates were adapted to in vitro culture before being used for in vitro gametocyte production. Maturation was assessed by microscopic observation of gametocyte morphology over time of culture and the functional viability of male gametocytes was assessed by microscopic counting of exflagellating gametocytes. Suitability for in vitro exflagellation-blocking bioassays was determined using dihydroartemisinin and methylene blue. RESULTS: In vitro gametocyte production was achieved using two isolates from French Guiana and two isolates from Cambodia. Functional maturity of male gametocytes was assessed by exflagellation observations and all four isolates could be used in exflagellation-blocking bioassays with adequate response to methylene blue and dihydroartemisinin. CONCLUSION: This work shows that in vitro culture-adapted P. falciparum field isolates of different genetic background, from South America and Southeast Asia, can successfully be used for bioassays targeting the male gametocyte to gamete transition, exflagellation.


Assuntos
Malária Falciparum/prevenção & controle , Parasitologia/métodos , Plasmodium falciparum/fisiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação , Reprodução
5.
Pharm Biol ; 52(9): 1134-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24649909

RESUMO

CONTEXT: The genus Cyclamen L. (Primulaceae) is rich in saponins known to have interesting biological activities. OBJECTIVE: To isolate saxifragifolin B and cyclamin, two triterpene saponins, from Cyclamen libanoticum Hildebr and Cyclamen persicum Mill, and to assess their cytotoxic, clastogenic/aneugenic, and anticlastogenic effects, as well as antioxidant potential. MATERIALS AND METHODS: Saxifragifolin B and cyclamin were tested for their cytotoxicity against SK-BR-3, HT-29, HepG2/3A, NCI-H1299, BXPC-3, 22RV1, and normal DMEM cell lines using WST-1 assay. Their clastogenic/aneugenic activities and anticlastogenic effects against the anticancer drug mitomycin C were assessed by the in vitro micronucleus assay in CHO cells. Their antioxidant capacities were determined using Fe(2+)-chelating and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays. RESULTS: Both saponins were described for the first time in Cyclamen libanoticum. They showed strong cytotoxic activities against the tested cancer cell lines. Saxifragifolin B was found to be 56- and 37-times more active than mitomycin C against breast adenocarcinoma (SK-BR-3) and lung carcinoma (NCI-H1299), respectively. Also, saxifragifolin B did not induce micronuclei formation and prevented cells from mitomycin C clastogenic effect. Cyclamin induced a significant increase of micronucleated cells after metabolic activation with S9 mix, and did not possess any anticlastogenic activity. Both molecules exhibited low antioxidant activities as compared to reference compounds. DISCUSSION AND CONCLUSIONS: This study showed the remarkable cytotoxic activity of saxifragifolin B, especially against breast adenocarcinoma and lung carcinoma and its chemoprotective activity against mitomycin C. Thus, saxifragifolin B could be suggested as a potential cytotoxic drug with a preventive effect against possible exposures to genotoxic agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cyclamen/química , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/toxicidade , Antimutagênicos/isolamento & purificação , Antimutagênicos/farmacologia , Antimutagênicos/toxicidade , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/toxicidade , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetulus , Humanos , Testes para Micronúcleos , Mitomicina/farmacologia , Mitomicina/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Saponinas/isolamento & purificação , Saponinas/toxicidade , Triterpenos/isolamento & purificação , Triterpenos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...